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Abstract A new non linear adjustment algorithm is proposed that includes the
possibility to satisfy conditions involving non linear analytical functions of the adjust-
ment parameters. It is based on the Levenberg-Marquardt algorithm and makes use of
Lagrange multipliers to fulfill external conditions. As an application, the method is
used to derive a modified Morse potential to represent the potential energy function of
the 2�1/2 ground state of nitric oxide (NO), while having both an acceptable descrip-
tion of the equilibrium bond length, the vibrational overtone spectrum to up to the 6th
overtone, the energy and the dispersion coefficient at dissociation NO→ N + O.

Keywords Conditioned non linear fits · Levenberg-Marquardt-algorithm ·
Lagrange multipliers ·Modified Morse potential · Nitric oxide · Overtone spectrum ·
C6 coefficient

1 Introduction

The Levenberg-Marquardt algorithm [1,2] is a widely used numerical algorithm for
non linear adjustment procedures. In chemistry, this algorithm has been used in a
variety of applications, such as to obtain effective spectroscopic parameters from high
resolution spectroscopy [3], rate constants in kinetics [4,5], equilibrium constants in
thermodynamics [6], and to model high dimensional potential energy [7,8] or dipole
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moment hypersurfaces [9] (this list being far from complete, see also [10,11] for recent
reviews).

In these applications, the relationship between variables x and y, given by a series
of related data xi and yi (i = 1, . . . , N ) is modeled by an analytical expression y =
f (x;p), where p is a parameter vector to be determined by optimization of a merit
function, such as

χ2(p) =
N∑

n=1

(
yn − f (xn,p)

σn

)2

, (1)

where the “weights” σn may be interpreted as statistical standard deviations of the
“measured” values yn . During the optimization procedure, the parameter vector p is
varied by short increments �p such as to minimize the merit function. In order to
simplify notation, x is taken to be a one dimensional quantity, here, but in general x
can be a higher dimensional vector; y is generally one dimensional.

It is often adequate to consider constrained procedures, in which the parameter vec-
tor p is varied only within a subspace of the full parameter space. If that subspace is a
linear space, it is rather easy to perform a linear transformation in parameter space and
reduce it to the number of parameters that can be varied unconstrainedly. However,
very often constraints are non linear functions of the parameters and a more elaborate
treatment becomes necessary.

In the present approach we make use of Lagrange multipliers to include external
constraints. Let C1(p), . . . , CM (p) be M (non linear) functions defining additional
constraints on the parameters to be adjusted. Then, the new merit function to be opti-
mized is

χ̃2(p) = χ2(p)+
M∑

m=1

μmCm(p), (2)

where μm are the Lagrange multipliers. We propose a new and efficient algorithm for
the optimization of the changed merit function χ̃ of Eq. (2). To our knowledge, the
problem of non linear adjustments under the consideration of additional constraints
has not yet been treated in this form and in connection with the Levenberg-Marquardt
algorithm. Previous work [12,13] used the Levenberg-Marquardt algorithm to deter-
mine Lagrange multipliers in constrained optimization tasks. The present approach
allows for the first time, to our knowledge, to directly derive optimal parameter sets
without explicit calculation of the Lagrange multipliers.

2 Theory

2.1 The Levenberg-Marquardt algorithm: a recall

The Levenberg-Marquardt algorithm proposes using the following equations for the
determination of the parameter step vector �p:
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1. If p is far away from its optimal value, then the best variation should be
proportional to the opposite of the gradient of the merit function at p:

�p = c∞β(p), (3)

where β(p) = −∇χ2(p) and c∞ is an adequate proportionality factor.
2. If p is close to its optimal value, then the best variation should be the solution of

the problem:

A(p) ·�p = β(p), (4)

where A(p) is the curvature matrix with matrix elements

Akl(p) =
N∑

n=1

1

σ 2
n

∂ f (xn;p)

∂pk

∂ f (xn;p)

∂pl
(5)

Eq. (4) may be derived from a similar equation, in which the curvature matrix is

replaced by the Hessian matrix with matrix elements Hi j = ∂2χ2

2∂pi∂p j
. The reason for

using the curvature matrix in Eq. (4) is that, in the iterative algorithm for the determi-

nation of the optimized parameter set described below, the cross derivatives ∂2 f
∂pi∂p j

may generally be neglected with respect to those terms appearing in the curvature
matrix, because of a statistical cancellation of terms containing positive and negative
deviations (yn − f (xn;p)).

In practice such a procedure may be implemented as follows (see, for instance, [14]):

1. A is replaced by Aλ, where

(Aλ)kl =
{

Akl if k �= l
Akk(1+ λ) if k = l.

(6)

2. Give an initial guess for p and λ.
3. Compute χ2(p),β(p) and A(p).
4. Solve for �p in

Aλ(p) ·�p = β(p), (7)

generally via computation of Aλ
−1(p), and evaluate χ2(p +�p).

If χ2(p +�p) ≥ χ2(p), increase λ by a constant factor and go back to 3.
If χ2(p + �p) < χ2(p), decrease λ by the same constant factor, replace p by
p +�p and go back to 3.

5. Interrupt the iteration in any of the following cases:
(a) If �χ2 = χ2(p + �p) − χ2(p) < 0 and �χ2 > −ε, where ε > 0 is a

convergence threshold.
(b) If λ > λmax , where λmax is a threshold for λ.
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(c) If Ncycle > Nmax cycle, where Ncycle is the iteration cycle number and Nmax cycle
is the maximal iteration cycle number.

The choice of an appropriate initial value for λ and the value of the constant var-
iation factor of λ depends on the initial guess for p. Convenient initial values are
quite generally on the order of 0.001 with variation factors on the order of 10. Note
that the algorithm is expected to deliver a trustfully converged result only if the first
interruption criterion 5a applies.

2.2 Inclusion of additional constraints

We wish to use an iterative procedure similar to that described in the previous section.
Given M analytical expressions C1(p), . . . , CM (p), we need to consider the merit
function χ̃2(p) as defined in Eq. (2). Thus we need to evaluate curvature matrices
Ãλ and negative gradients β̃ which theoretically include a priori unknown Lagrange
multipliers μ1, . . . , μM .

Without loss of generality, we may always rewrite all conditions such as to yield

Cn(p) ≡ 0 for n = 1, . . . , M, (8)

at the optimal parameter set.
For the negative gradient we write

β̃(p) = β(p)−
M∑

n=1

μn∇Cn(p). (9)

For the curvature matrix, let

Ãλ = Aλ. (10)

In this equation we indeed neglect the cross derivatives ∂2Cn
∂pi∂p j

(n = 1, . . . , M), in

analogy to the original Marquardt algorithm, in which the cross derivatives ∂2 f
∂pi∂p j

are neglected. In the iterative procedure we now impose that the additional conditions
be satisfied at each new iteration step. With Eq. (8) and

Cn(p +�p) ≈ Cn(p)+∇Cn(p)T ·�p (11)

this implies that

Cn(p) ≈ −∇Cn(p)T ·�p, (12)

where ∇Cn(p)T is the transposed vector of ∇Cn(p). For non-linear condition func-
tions, this prescription does not normally lead to full satisfaction of Eq. (8). However,
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in the convergence limit �p becomes continuously smaller and it is expected that
Eq. (8) is improved at every step.

As we shall show now, Eq. (12) is suitable to calculate an iteration of Lagrange
multipliers. Because �p = Aλ

−1(p)β̃(p), this equation implies

− Cn(p) = ∇Cn(p)T Aλ
−1(p)β̃(p) (13)

= ∇Cn(p)T Aλ
−1(p)β(p)−

M∑

m=1

μm∇Cn(p)T Aλ
−1(p)∇Cm(p). (14)

Thus, if μ is the trial vector of Lagrange multipliers, it may be obtained as the solution
of a set of linear equations

	(p)μ = C̃(p), (15)

at a given parameter set vector p.
The new procedure may be implemented as follows:

1. Give an initial guess for p and λ.
2. Compute χ2(p),β(p),Aλ(p),Aλ

−1(p); the latter will normally also be used in
step 4 below. Evaluate all conditions Cn(p) and their derivatives ∂Cn(p)/∂pi , and
compute the expressions

	nm(p) = ∇Cn(p)T Aλ
−1(p)∇Cm(p) (16)

C̃n = Cn(p)+∇Cn(p)T Aλ
−1(p)β(p). (17)

3. Determine trial Lagrange multipliers by solving the set of linear equations

M∑

m=1

	nm(p)μm = C̃n(p). (18)

4. Get β̃(p) = β(p)−∑
m μm∇Cn(p), solve for �p in

Aλ(p) ·�p = β̃(p) (19)

and evaluate χ2(p +�p).
If χ2(p +�p) ≥ χ2(p), increase λ by a constant factor and go back to 2.
If χ2(p + �p) < χ2(p), decrease λ by the same constant factor, replace p by
p +�p and go back to 2.

5. Interrupt the iteration in any of the following cases:
(a) If �χ2 = χ2(p + �p) − χ2(p) < 0 and �χ2 > −ε, where ε > 0 is a

convergence threshold.
(b) If λ > λmax , where λmax is a threshold for λ.
(c) If Ncycle > Nmax cycle, where Ncycle is the iteration cycle number and

Nmax cycle is the maximal iteration cycle number.
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3 Application

As an example of an application, we derive an analytical potential energy function for
the 2�1/2 ground state of nitric oxide (14N16O). The analytical form, to be described
below, is adjusted to adiabatic energy data calculated ab initio at the MRCI level of
theory using an aug-cc-pVQZ basis within the MOLPRO program [15]. A simple (7,6)
CAS space was used and the two degenerate � components were calculated and then
used to set up the rank 4 spin-orbit matrix of the full Breit-Pauli operator. The reported
energies correspond to the lowest pair of eigenvalues from this matrix. For the present
application, we consider equal weight of 1 cm−1 to all ab initio data.

20 energy points obtained in this way are then modeled with the following analytical
function:

V (the)(r) = Ve

(
e−2a(r)(r − re) − 2 e−a(r)(r − re)

)

+V0 + (V∞ − V0)e
− (r6/r)6

(20)

where

a(r) = a0

(
1− bs arctan

(
r2

s

r2 − 2
rs

r

))
(21)

is an appropriate “anharmonicity” function. Equation (20) is a generalization of
the well known Morse potential [16]. Similar functions were used quite successfully
in the modeling of the potential energy hypersurfaces for methane [9], ammonia [17]
and the CO/Cu(100) adsorption system [18]. The exp(−(r6/r)6) factor was introduced
in [7]; it “switches” the last energy term from V0 at r ∼ re to V∞ for r →∞. Note that
the expression from Eq. (20) reduces to the conventional Morse potential when bs = 0
and V∞ = V0. When V∞ > V0, however, and contrary to the conventional Morse
potential, this form allows to obtain the physically correct ∼ C6/r6 behavior of the
interaction energy between neutral particles [19] with a weak interaction coefficient

C6 = (V∞ − V0) r2
6 . (22)

Normally, r6 > 2re, and consequently the last term of the model potential has
effectively very little influence on the shape of the potential close to re.

Results of several fits are collected in Table 1. The column “original Morse
potential” gives parameter values from a fit of the original Morse potential. The root-
mean-square deviation (“rms”)

�Vrms =
√√√√ 1

N

N∑

n=1

(Vn − V (rn))
2 (23)
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Table 1 Parameters obtained from the adjustment of the analytical function Eq. (20) to ab initio data as
described in the text

Reference
value

Original
Morse
potential

Modified
Morse
potential

Constrained
mod. Morse
potential I

Constrained
mod. Morse
potential II

re/Å 1.151a 1.135 1.153 1.151 1.155

a0/Å−1 – 2.932 3.481 3.610 3.249

Ve/hc cm−1 – 52 921 51 260 51 254 52 290

bS – 0.000 0.1463 0.1606 0.1189

rS/Å – – 3.787 3.891 3.458

V0/hc cm−1 – 1 111 −222.4 −521.6 458.2

V∞/hc cm−1 – 1 111 6.014 571.7 516.5

r6/Å – – 3.000h 3.000h 3.000h

�Vrms/hc cm−1 1193 12 247 335

De/hc cm−1 52 348b 51 810 51 489 52 348 52 348

C6/Å6hc cm−1 42 550c 0.000 1 664 900 7 969 000 42 550

ν̃n←0/cm−1

1← 0 1 876.1d 1 988 1 876 1 891 1 875

2← 0 3 723.9e 3 937 3 724 3 752 3 724

3← 0 5 543.7e 5 848 5 543 5 585 5 546

4← 0 7 335.6f 7 719 7 333 7 388 7 343

5← 0 9 099.5f 9 552 9 096 9 163 9 113

6← 0 10 835f 11 346 10 830 10 909 10 857

7← 0 12 547g 13 101 12 536 12 626 12 575

�ν̃rms/cm−1 561 5 55 15

The quantities De and C6 are the dissociation energy on the potential energy function and the C6 coefficient,
respectively; ν̃n←0(n = 1, . . .) are the vibrational fundamental and overtones
a From [22]
b From [21]; the value of 52 348 cm−1 corresponds to D0, and has been used in the present fit in place of
De, for which the value 53 286 cm−1 can be derived from ref. [21]
c From [23]
d From [24]
e From [25]
f From [26]
g From [27]
h This value was kept fixed during the fits

of the fitted data (N = 20) is rather large, in this case, showing that a simple Morse
potential is insufficient to give an acceptable quantitative representation of the data.
This can also be seen from Fig. 1.

In the following, we compare also the dissociation energy

De = V∞ − V0 + Ve, (24)
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Fig. 1 Potential energy functions for the 2�1/2 ground state of nitric oxide; r is the NO bond length. The
different symbol corresponds to (see also Table 1): diamond indicates MRCI energies as described in the
text; the value at r = 600 pm corresponds to −129.4980 Eh ; dashed lines original Morse potential; long
dashed lines modified Morse potential from Eq. (20), unconstrained fit; dash with dotted lines modified
Morse potential from Eq. (20), constrained fit I (see text); solid lines modified Morse potential from Eq. (20),
following constrained fit II (see text)

the C6-coefficient and the values for vibrational band centers ν̃n←0 (fundamental
n = 1 and overtones to up to n = 7). Theoretical values of the latter are obtained
from a numerical solution of the Schrödinger equation for the nuclear motion using a
DVR eigensolver reported elsewhere [20]; atomic masses mN = 14.00307 u and mO
= 15.99491 u are used, and the numerical convergence is verified. Experimental and
theoretical reference values are given in the first column of Table 1.

We see that the simple Morse potential reproduces reference values too poorly. In
the extended version of the Morse potential, the parameter bs may be varied away from
zero, and V∞ away from V0; consequently both rs and r6 parameters become additional
adjustable parameters. The increased flexibility allows, as we see from inspection of
Table 1 and Fig. 1, to improve the analytical representation of the potential function
considerably, as �Vrms is decreased by two orders of magnitude. In particular, the rms
of deviations to experimental vibrational band centers to up to the 6th overtone,

�ν̃rms =
√√√√1

7

7∑

n=1

(
ν̃

(exp)

n←0 − ν̃
(the)
n←0

)2
, (25)

is reduced from 561 cm−1 , obtained for the original Morse potential, to 5 cm−1 . The
number of adjustable parameters has hereby been increased from four to eight. We
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find that �Vrms is quite a flat function of the parameter r6. We prefer thus to fix the
value of this parameter to 300 pm. Hence, seven parameters are effectively varied.

The representation of the MRCI energy points with the modified Morse potential
allows thus, perhaps fortuitously, for a much better description of the overtone spec-
trum. However, the dissociation energy obtained from this representation is roughly
10 kJmol−1 (859 cm−1) lower than predicted from a high level ab initio calcula-
tion [21], a deviation 10 times larger than the currently acceptable “chemical accuracy”
of 1 kJmol−1 .

In a first attempt to improve this energy, we consider De = 52 348 hc cm−1 , with
De from Eq. (24) as an additional condition to be satisfied during the adjustment
(column “constrained modified Morse potential I” in Table 1). Note that this linear
condition among the parameters Ve, V0 and V∞ can more simply be implemented by
defining, e.g. V0 = Ve+ V∞− 52 348 hc cm−1 . Here, we used instead the procedure
described in Sect. 2.2. As can be seen from the table, parameters change slightly and
the dissociation energy can be made to match the reference value. As expected, the
rms to the ab initio data points increases (from 12 to about 250 cm−1 ). The quality of
the description of the vibrational transitions is quite substantially reduced, too. Also,
the C6 coefficient is two orders of magnitude larger than the reference value.

We may then consider the condition C6 = 42 550 Å6hc cm−1 , with C6 from
Eq. (22) as an additional constraint. We refrain from reproducing the result here.
Instead, we consider as an additional, third constraint the condition

ν̃
(exp)

1←0 = ωe − 2 ωexe (26)

where

ωe = 1

2π c
a(re)

√
2 Ve

μ
(27)

ωexe = ωe
2

4 Ve
(28)

are the usual spectroscopic constants related to the Morse oscillator, ν̃
(exp)

1←0 =
1876.1 cm−1 is the experimental value for the fundamental transition, and μ =
mN mO/(mN + mO). In Eq. (27), a(re) = a0

(
1− bs arctan

(
(rs/re)

2 − 2 rs/re
))

;
the condition Eq. (26) is thus highly non-linear and involves five of the seven adjusted
parameters.

Given that the original Morse potential is not expected to provide accurately even the
fundamental transition, we replace ad hoc ν̃

(exp)

1←0 , in Eq. (26), by ν̃
(exp)

1←0/1.005. Together
with the conditions on De (Eq. (24)), and C6 (Eq. (22)), this set of three additional
constraints is considered in an adjustment of the seven parameters, the result of which
is given in column “constrained modified Morse potential II”. One sees that the overall
rms to the ab initio data set is larger than for the less constrained or the unconstrained
fits. However, the dissociation energy and the C6 coefficients now match the reference
values and the vibrational transitions are quite well described. Note that, effectively,
only four parameters have been varied freely in this last fit, since three additional
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conditions among the seven adjusted parameters had to be fulfilled simultaneously. It
can be expected that a more flexible analytical representation could help to improve
further the theoretical description of the vibrational spectrum.

4 Conclusions

Numerical non linear adjustment procedures are used in natural and engineering sci-
ences to optimize processes or models. One widely used numerical method is the
Levenberg-Marquardt algorithm [1,2]. The power of this algorithm is the capabil-
ity of dynamically switching between quadratic (Gauss-Newton) and linear (gradient
descent) methods. This feature is based on an ad hoc use of a parameter dependent
curvature matrix Aλ; when the parameter λ is small, the adjustment is local and con-
vergence is quadratic, while when λ is large, convergence is linear and the adjustment
is global.

In the present paper, and quite in the spirit of the Levenberg-Marquardt idea, an
extension of this algorithm is proposed, that allows for the simultaneous fulfillment
of additional constraints via the use of Lagrange multipliers. No formal proof is given
here, though, that the extension also permits the switching between the quadratic and
linear convergence regimes. Also, as for the original algorithm, the extension pro-
posed here does not a priori guarantee convergence, which can be highly problem and
model dependent. In particular, the algorithm will fail, if the curvature matrix, Aλ,
or the matrix 	 that is needed to obtain trial Lagrange multipliers become singular.
However, from the author’s own experience, the algorithm is quite robust.

As an example of an application, the derivation of a modified Morse potential is
shown to be possible, where parameters are adjusted to an ensemble of energy points
calculated ab initio of the nitric oxide molecule, while verifying a certain number
of additional constraints. Similar applications of this method have lead to successful
determinations of analytical potential energy hypersurfaces of polyatomic molecules
in the past [7–9,17,18]. It is conceivable that this rather simple method can be applied
in other fields of chemistry and science in general.
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